Dr. Muhammad Amber Fareed is a dedicated and dynamic clinical academic whose career reflects an unwavering commitment to research, academia, and clinical excellence. His energy, creativity, and passion are evident in every aspect of his professional journey. With a distinguished and consistent record of achievement, Dr. Fareed has excelled in teaching, research, and scholarly pursuits. One of Dr. Fareed’s key qualities is his innovative approach to dental education, where he prioritizes creativity. He believes that dynamic and imaginative teaching methodologies enhance the learning experience, making the acquisition of knowledge more engaging and effective. Beyond the classroom, Dr. Fareed has embraced a wide range of teaching responsibilities, significantly enriching the educational journeys of both undergraduate and postgraduate students in clinical academia and biomedical research. His contributions extend beyond traditional academic boundaries, creating a holistic learning environment. Before joining the esteemed faculty at Ajman University, Dr. Fareed gained valuable international experience in various academic and clinical roles in the United Kingdom, Pakistan, the UAE, and the Sultanate of Oman. This diverse background has broadened his expertise and enriched his perspective on dental practices and education worldwide. He continues to shape the future of dental education and clinical practice at Ajman University.
Objective This study aimed to assess in vitro bioactivity of novel remineralizing dental composites loaded with calcium phosphate fillers and chlorhexidine in polypropylene glycol (PPG) resin matrix. Methods The stock monomer was prepared by adding 69.75% urethane dimethacrylate and 23.25% of the polypropylene glycol dimethacrylate with silica fillers, chlorhexidine (5 wt%), and varying levels of calcium phosphate fillers. The study groups were BC (basic composite), commercial control, CHX-CP5, CHX-CP10, and CHX-CP15, respectively. Bioactivity was assessed by placing samples in the simulated body fluid (SBF) for 7, 14, and 28 days and observed under the scanning electron microscope and energy dispersive X-ray spectroscopy. Data were presented in mean and percentage with a 95% confidence interval. Intergroup analysis was performed using one-way ANOVA and the p-value was set ≤0.05. Results The SEM images showed the deposition of calcium phosphate on the surface of CHX-CP10 and CHX-CP15 after 28 days in SBF. Mineral deposits of calcium and phosphate were observed on the surface of the experimental formulation containing higher calcium phosphate fillers (CP10 and CP15) in EDX. Conclusion The addition of calcium phosphate fillers to the composites resulted in an apatite layer formed and demonstrated enhanced bioactivity in the presence of PPGDMA and CHX.
Tissue engineering in the orofacial region with bioactive components by the activation of immune complexes or other proteins is the current focus of biomaterials research. Consequently, natural ground materials and tissue components are being created. Bioactive glass is one of the most promising biomaterials and has bioactive properties making it suited for a range of different clinical dental applications, including the regeneration of hard tissues in the craniofacial region. This narrative review provides a summary of the favorable properties and recent applications of bioactive glass materials for the management of periodontal lesions. Bioactive glass mimics natural calcified tissues in terms of composition and has a bioactive role in bone regeneration. The present review concluded that bioactive glass materials have a promising potential for various periodontal applications including the repair of infrabony defects, gingival recession, furcation defects, and guided tissue regeneration. However, further in vivo studies and clinical trials are warranted to advance and validate the potential of bioactive glass for periodontal applications and translate its usage in dental clinics for periodontology.
Objective This review aimed to highlight the insight into adhesion aspects within the components of the glass FRC (i.e., fiber and matrix) and between resin luting material and the glass FRC construction. Methods The fundamentals of semi-interpenetrating polymer network (semi-IPN) based FRCs and their advantages in forming a solid adhesive interface with indirect FRC restoration, dental adhesive, and luting cement are elaborated. The important resin matrix systems and glass fibers used in FRCs are discussed. This is principally based on a survey of the literature over Medline/PubMed, Web of Science, and Scopus databases and a review of the relevant studies and publications in scientific papers in international peer-reviewed journals for the specific topic of biomaterials science. The keywords used for the search approach were: adhesion, fiber-reinforced composite, glass fiber, and semi-interpenetrating polymer network. Results The polymer matrix systems of semi-IPN-based FRCs and formation of secondary-IPN layer are pivotal for bonding of multiphasic indirect dental constructs and repair. Additionally, describing areas of indication for FRCs in dentistry, explaining the adhesion aspects of FRC for the cohesion of the material itself, and for obtaining durable adhesion when the FRC construct is luted to tooth and remaining dentition. Current progress in the field of FRC research and future directions are summarized and presented. Significance By understanding the isotropic-anisotropic nature of fibers and the interfacial adhesion within the components of the FRC; between resin cement and the FRC construction, the clinically successful FRC-based multiphasic indirect tooth construct can be achieved. The interfacial adhesion within the components of the FRC and between resin luting material and the FRC construction play a key role in adhesion-based unibody dental restorations.
This study evaluated the physicochemical and antibacterial properties of EQUIATM coat liquid (E) after incorporation of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles. ZnO and TiO2 (1 wt.% and 2 wt.%) were dispersed in EQUIA coat. Principal component analysis (PCA) and cluster analysis were performed to visualize systemic variation. Antibacterial activity was evaluated by colony-forming units and crystal violet staining using Streptococcus mutans and Lactobacillus acidophilus after 24 h, 48 h, and 72 h, and the microstructure was studied by scanning electron microscopy. The weight change was analyzed at 1 and 21 days. The PCA for TiO2- and ZnO-based groups showed 100% variance at all spectral ranges at 600–800/cm and 800–1200/cm, whereas 1200–1800/cm and 2700–3800/cm spectral regions demonstrated 99% variance. The absorbance values were significant (p < 0.05) for both nanoparticles-based adhesives, and the specimens with 2 wt.% ZnO showed the maximum response by minimum bacterial attachment, and the control group showed the least response by maximum attachment. The weight change percentage was reduced after the incorporation of antibacterial nanoparticles. It is suggested that EQUIATM coat containing nanoparticles exhibits promising results, and it may be recommended to clinically use as an improved coating material.
This study aimed to determine the effect of the testing method configuration on the bi-axial flexural strength (BFS) of three resin-based dental composites (RDCs). A total of 180 disc-shaped samples (12 mm diameter x 1 mm thickness) for each RDC were fabricated using split back nylon mould. The BFS was determined for specimens made in three commercial RDCs; microhybrid (MH), nanofilled paste (NFP) and nanofilled flowable (NFF) using the ring-on-ring (RoR; n = 90 for each RDC specimens) and ball-on-ring (BoR; n = 90 for each RDC specimens) configurations at a cross-head speed of 1 mm/min. RDC specimens of MH and NFP tested in the BoR configuration showed higher mean BFS values compared to those tested in the RoR configuration. (p < 0.001). The effect of test configuration on BFS values was insignificant for the specimens belonging to the NFF group (p = 0.207). Moreover, the Weibull modulus of NFF in the RoR configuration was statistically lower compared to those for NFF in the BoR configuration as the 95% confidence interval of Weibull modulus did not overlap. The specimen support and testing configuration significantly impacted the BFS value of the RDCs. The Weibull statistics appeared to be inappropriate for all kinds of RDCs.
Abstract Instability of the dentine-resin interface is owed to the partial/incomplete penetration of the resin adhesives in the collagen fibrils. However, interfacial hydrolysis of the resin-matrix hybrid layer complex activates the collagenolytic and esterase enzymes that cause the degradation of the hybrid layer. Adequate hybridization is often prevented due to the water trapped between the interfibrillar spaces of the collagen network. Cyclic fatigue rupture and denaturation of the exposed collagen fibrils have been observed on repeated application of masticatory forces. To prevent interfacial microstructure, various approaches have been explored. Techniques that stabilize the resin–dentine bond have utilized endogenous proteases inhibitors, cross linking agents’ incorporation in the exposed collagen fibrils, an adhesive system free of water, and methods to increase the monomer penetration into the adhesives interface. Therefore, it is important to discover and analyze the causes of interfacial degradation and discover methods to stabilize the hybrid layer to execute new technique and materials. To achieve a predictable and durable adhesive resin, restoration is a solution to the many clinical problems arising due to microleakage, loss of integrity of the restoration, secondary caries, and postoperative sensitivity. To enhance the longevity of the resin-dentine bond strength, several experimental strategies have been carried out to improve the resistance to enzymatic degradation by inhibiting intrinsic collagenolytic activity. In addition, biomimetic remineralization research has advanced considerably to contemporary approaches of both intrafibrillar and extrafibrillar remineralization of dental hard tissues. Thus, in the presence of biomimetic analog complete remineralization of collagen, fibers are identified.
Amidst growing technological advancements, newer denture base materials and polymerization methods have been introduced. During fabrication, certain mechanical properties are vital for the clinical longevity of the denture base. This systematic review aimed to explore the effect of newer denture base materials and/or polymerization methods on the mechanical properties of the denture base. An electronic database search of English peer-reviewed published papers was conducted using related keywords from 1 January 2011, up until 31 December 2021. This systematic review was based on guidelines proposed by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The search identified 579 papers. However, the inclusion criteria recognized 22 papers for eligibility. The risk of bias was moderate in all studies except in two where it was observed as low. Heat cure polymethyl methacrylate (PMMA) and compression moulding using a water bath is still a widely used base material and polymerization technique, respectively. However, chemically modified PMMA using monomers, oligomers, copolymers and cross-linking agents may have a promising result. Although chemically modified PMMA resin might enhance the mechanical properties of denture base material, no clear inferences can be drawn about the superiority of any polymerization method other than the conventional compression moulding technique.
It has been nearly two years since the pandemic caused by the novel coronavirus disease (COVID-19) has affected the world. Several innovations and discoveries related to COVID-19 are surfacing every day and new problems associated with the COVID-19 virus are also coming to light. A similar situation is with the emergence of deep invasive fungal infections associated with severe acute respiratory syndrome 2 (SARS-CoV-2). Recent literature reported the cases of pulmonary and rhino-cerebral fungal infections appearing in patients previously infected by COVID-19. Histopathological analysis of these cases has shown that most of such infections are diagnosed as mucormycosis or aspergillosis. Rhino-orbital-cerebral mucormycosis usually affects the maxillary sinus with involvement of maxillary teeth, orbits, and ethmoidal sinuses. Diabetes mellitus is an independent risk factor for both COVID-19 as well as mucormycosis. At this point, there is scanty data on the subject and most of the published literature comprises of either case reports or case series with no long-term data available. The aim of this review paper is to present the characteristics of COVID-19 related mucormycosis and associated clinical features, outcome, diagnostic and management strategies. A prompt diagnosis and aggressive treatment planning can surely benefit these patients.
This study aimed to modify an EQUIA coat (EC; GC, Japan) by incorporating 1 and 2 wt.% of zinc oxide (ZnO; EC-Z1 and EC-Z2) and titanium dioxide (TiO2; EC-T1 and EC-T2) nanoparticles, whereby structural and phase analyses were assessed using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), respectively. Thermogravimetric analysis/differential scanning calorimetry, micro-hardness, and water absorption analyses were conducted, and the microstructure was studied by scanning electron microscopy/energy-dispersive spectroscopy. FTIR spectra showed a reduction in peak heights of amide (1521 cm−1) and carbonyl (1716 cm−1) groups. XRD showed peaks of ZnO (2θ ~ 31.3°, 34.0°, 35.8°, 47.1°, 56.2°, 62.5°, 67.6°, and 68.7°) and TiO2 (2θ ~ 25.3°, 37.8°, 47.9, 54.5°, 62.8°, 69.5°, and 75.1°) corresponding to a hexagonal phase with a wurtzite structure and an anatase phase, respectively. Thermal stability was improved in newly modified materials in comparison to the control group. The sequence of obtained glass transitions was EC-T2 (111 °C), EC-T1 (102 °C), EC-Z2 (98 °C), EC-Z1 (92 °C), and EC-C (90 °C). EC-T2 and EC-T1 showed the highest (43.76 ± 2.78) and lowest (29.58 ± 3.2) micro-hardness values. EC showed the maximum water absorption (1.6%) at day 7 followed by EC-T1 (0.82%) and EC-Z1 (0.61%). These results suggest that EC with ZnO and TiO2 nanoparticles has the potential to be used clinically as a coating material.